When dividing terms with exponents that have the same base, you subtract the exponents. This rule is a fundamental concept in working with Exponents.
Here's the rule:
x<sup>m</sup> / x<sup>n</sup> = x<sup>(m-n)</sup>
Explanation:
Same Base: This rule only applies if the bases (the 'x' in the above example) are the same. You can't directly apply this rule to something like 2<sup>3</sup> / 3<sup>2</sup>.
Subtracting Exponents: You subtract the exponent in the denominator (n) from the exponent in the numerator (m).
Examples:
5<sup>7</sup> / 5<sup>3</sup> = 5<sup>(7-3)</sup> = 5<sup>4</sup>
x<sup>10</sup> / x<sup>2</sup> = x<sup>(10-2)</sup> = x<sup>8</sup>
Important Considerations:
Zero Exponents: If m = n, then x<sup>(m-n)</sup> = x<sup>0</sup>, which equals 1 (as long as x is not zero). See also Zero%20Exponent.
Negative Exponents: If n > m, then x<sup>(m-n)</sup> will result in a negative exponent. A negative exponent means you take the reciprocal of the base raised to the positive version of that exponent. For example, x<sup>-2</sup> = 1/x<sup>2</sup>. More on Negative%20Exponents.
Fractions: The rule still applies if the exponents are fractions. For example, x<sup>(1/2)</sup> / x<sup>(1/4)</sup> = x<sup>(1/2 - 1/4)</sup> = x<sup>(1/4)</sup>
Combining with other rules: You may need to combine this rule with other exponent rules like the power of a product rule or the power of a power rule when simplifying expressions. See also Exponent%20Rules for more information.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page